Changes in the activity of a CpG neuron after the reinforcement of an operantly conditioned behavior in Lymnaea.
نویسندگان
چکیده
We have previously shown that the aerial respiratory behavior of the mollusk Lymnaea stagnalis can be operantly conditioned, and the central pattern generating (CPG) neurons underlying this behavior have been identified. As neural correlates of operant conditioning remain poorly defined in both vertebrates and invertebrates, we have used the Lymnaea respiratory CPG to investigate neuronal changes associated with the change in behavior after conditioning. After operant conditioning of the intact animals, semi-intact preparations were dissected, so that changes in the respiratory behavior (pneumostome openings) and underlying activity of the identified CPG neuron, right pedal dorsal 1 (RPeD1), could be monitored simultaneously. RPeD1 was studied because it initiates the rhythmic activity of the CPG and receives chemo-sensory input from the pneumostome area. Pneumostome openings and RPeD1 activity were monitored both before and after a reinforcing training stimulus applied to the open pneumostome of operantly conditioned and yoked control preparations. After presentation of the reinforcing stimulus, there was a significant reduction in both breathing behavior and RPeD1 activity in operant preparations but not in yoked and naïve controls. Furthermore these changes were only significant in the subgroup of operantly conditioned animals described as good learners and not in poor learners. These data strongly suggest that changes in RPeD1 activity may underlie the behavioral changes associated with the reinforcement of operant conditioning of the respiratory behavior.
منابع مشابه
Neural changes after operant conditioning of the aerial respiratory behavior in Lymnaea stagnalis.
In this study, we demonstrate neural changes that occurred during operant conditioning of the aerial respiratory behavior of Lymnaea stagnalis. Aerial respiration in Lymnaea occurs at the water interface and is achieved by opening and closing movements of its respiratory orifice, the pneumostome. This behavior is controlled by a central pattern generator (CPG), the neurons of which, as well as ...
متن کاملMethamphetamine enhances memory of operantly conditioned respiratory behavior in the snail Lymnaea stagnalis.
Amphetamines have been used as cognitive enhancers to promote learning and memory. Amphetamines are also drugs of abuse that may promote the initiation of strong memories that ultimately lead to addiction. To understand how methamphetamine (Meth) may be augmenting learning and memory, we chose a relatively simple system, the pond snail, Lymnaea stagnalis. We studied the effects of Meth exposure...
متن کاملElectrophysiological characteristics of feeding-related neurons after taste avoidance Pavlovian conditioning in Lymnaea stagnalis
Taste avoidance conditioning (TAC) was carried out on the pond snail, Lymnaea stagnalis. The conditional stimulus (CS) was sucrose which elicits feeding behavior; while the unconditional stimulus (US) was a tactile stimulus to the head which causes feeding to be suppressed. The neuronal circuit that drives feeding behavior in Lymnaea is well worked out. We therefore compared the physiological c...
متن کاملSensory input from the osphradium modulates the response to memory-enhancing stressors in Lymnaea stagnalis.
In the freshwater environment species often rely on chemosensory information to modulate behavior. The pond snail, Lymnaea stagnalis, is a model species used to characterize the causal mechanisms of long-term memory (LTM) formation. Chemical stressors including crayfish kairomones and KCl enhance LTM formation (≥24 h) in Lymnaea; however, how these stressors are sensed and the mechanism by whic...
متن کاملReconsolidation of a long-term memory in Lymnaea requires new protein and RNA synthesis and the soma of right pedal dorsal 1.
Reconsolidation of a long-term memory (LTM) in the snail Lymnaea stagnalis can be disrupted by cooling, an RNA synthesis blocker (actinomycin D), and by specifically ablating the soma of a cell we know is a site of LTM consolidation (right pedal dorsal 1, RPeD1). Aerial respiratory behavior was conditioned operantly by applying a gentle tactile stimulus to the pneumostome area (the respiratory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 88 4 شماره
صفحات -
تاریخ انتشار 2002